How Embracing SR 11-7 Guidelines Can Support the CECL Process

The Board of Governors of the Federal Reserve System’s SR 11-7 supervisory guidance (2011) provides an effective model risk management framework for financial institutions (FI’s). SR 11-7 covers everything from the definition of a model to the robust policies/procedures that should exist within a model risk management framework. To reduce model risk, any FI should consider following the guidance throughout internal and regulatory processes as its guidelines are comprehensive and reflect a banking industry standard.

The following items and quotations represent an overview of the SR 11-7 guidelines (Board of Governors of the Federal Reserve System, 2011):

  1. The definition of a model – “the term model refers to a quantitative method, system, or approach that applies statistical, economic, financial, or mathematical theories, techniques, and assumptions to process input data into quantitative estimates.”
  2. A focus on the purpose/use of a model – “even a fundamentally sound model producing accurate outputs consistent with the design objective of the model may exhibit high model risk if it is misapplied or misused.”
  3. The three elements of model risk management:
    • Robust model development, implementation, and use – “the design, theory, logic underlying the model should be well documented and generally supported by published research and sound industry practice.”
    • Sound model validation process – “an effective validation framework should include three core elements: evaluation of conceptual soundness, …, ongoing monitoring, …, and benchmarking, outcomes analysis, …”
    • Governance – “a strong governance framework provides explicit support and structure to risk management functions through policies defining relevant risk management activities, procedures that implement those policies, allocation of resources, and mechanisms for evaluating whether policies and procedures are being carried out as specified.”

The majority of what the SR 11-7 guidelines discuss applies to some of the new aspects from the accounting standard CECL (FASB, 2016). Any FI under CECL regulation must provide explanations, justifications, and rationales for the entirety of the CECL process including (but not limited to) model development, validation, and governance. The SR 11-7 guidelines will help FI’s develop effective CECL processes in order to limit model risk.

Some considerations from the SR 11-7 guidelines in regards to the components of CECL include (but are not limited to):

  • Determining appropriateness of data and models for CECL purposes. Existing processes may need to be modified due to some differing CECL requirements (e.g., life of loan loss estimation).
  • Completing comprehensive documentation and testing of model development processes. Existing documentation may need to be updated to comply with CECL (e.g., new models or implementation processes).
  • Accounting for model uncertainty and inaccuracy through the understanding of potential limitations/assumptions. Existing model documentation may need to be re-evaluated to determine if new limitations/assumptions exist under CECL.
  • Ensuring validation independence from model development. Existing validation groups may need to be further separated from model development (e.g., external validators).
  • Developing a strong governance framework specifically for CECL purposes. Existing policies/procedures may need to be modified to ensure CECL processes are being covered.

The SR 11-7 guidelines can provide FI’s with the information they need to start their CECL process. Although not mandated, following these guidelines overall is important in reducing model risk and in establishing standards that all teams within and across FI’s can follow and can regard as a true industry standard.

Resources:

  1. Board of Governors of the Federal Reserve System. “SR 11-7 Guidance on Model Risk Management”. April 4, 2011.
  2. Daniel Brown and Dr. Craig Peters. “New Impairment Model: Governance Considerations”. Moody’s Analytics Risk Perspectives. The Convergence of Risk, Finance, and Accounting: CECL. Volume VIII. November 2016.
  3. Financial Accounting Standards Board (FASB). Financial Instruments – Credit Losses (Topic 326). No. 2016-13. June 2016.

Samantha Zerger, business analytics consultant with FRG, is skilled in technical writing. Since graduating from the North Carolina State University’s Financial Mathematics Master’s program in 2017 and joining FRG, she has taken on leadership roles in developing project documentation as well as improving internal documentation processes.

 

IFRS 17: Killing Two Birds

Time is ticking for the 450 insurers around the world to comply with the International Financial Reporting Standard 17 (IFRS 17) by January 1, 2021 for companies with their financial year starting on January 1.

Insurers are at different stages of preparation, ranging from performing gap analyses, to issuing requirements to software and consulting vendors, to starting the pilot phase with a new IFRS 17 system, with a few already embarking on implementing a full IFRS 17 system.

Unlike the banks, the insurance industry has historically spent less on large IT system revamps. This is in part due to the additional volume, frequency and variety of banking transactions compared to insurance transactions.

IFRS 17 is one of the biggest ‘people, process and technology’ revamp exercises for the insurance industry in a long while. The Big 4 firms have published a multitude of papers and videos on the Internet highlighting the impact of the new reporting standard on insurance contracts that was issued by the IASB in May 2017. In short, it is causing a buzz in the industry.

As efforts are focused on ensuring regulatory compliance to the new standard, insurers must also ask: “What other strategic value can be derived from our heavy investment in time, manpower and money in this whole exercise?”

The answer—analytics to gain deeper business insights.

One key objective of IFRS 17 is to provide information at a level of granularity that helps stakeholders assess the effect of insurance contracts on financial position, financial performance and cash flows, increasing transparency and comparability.

Most IFRS 17 systems in the market today achieves this by bringing the required data into the system, compute, report and integrate to the insurer’s GL system. From a technology perspective, such systems will comprise a data management tool, a data model, a computation engine and a reporting tool. However, most of these systems are not built to provide strategic value beyond pure IFRS 17 compliance.

Apart from the IFRS 17 data, an insurer can use this exercise to put in place an enterprise analytics platform that caters beyond IFRS 17 reporting, to broader and deeper financial analytics, to customer analytics, operational and risk analytics. To leverage on new predictive analytics technologies like machine learning and artificial intelligence, a robust enterprise data platform to house and make available large volumes of data (big data) is crucial.

Artificial Intelligence can empower important processes like claims analyses, asset management, risk calculation, and prevention. For instance, better forecasting of claims experience based on a larger variety and volume of real-time data. The same machine can be used to make informed decisions about investments based on intelligent algorithms, among other use cases.

As the collection of data becomes easier and more cost effective, Artificial Intelligence can drive whole new growths for the insurance industry.

The key is centralizing most of your data onto a robust enterprise platform to allow cross line of business insights and prediction.

As an insurer, if your firm has not embarked on such a platform, selecting a robust system that can cater to IFRS 17 requirements AND beyond will be a case of killing 2 birds with one stone.

FRG can help you and your teams get ready for IFRS 17.  Contact us today for more information.

Tan Cheng See is Director of Business Development and Operations for FRG.

Is Your Business Getting The Full Bang for Its CECL Buck?

Accounting and regulatory changes often require resources and efforts above and beyond “business as usual”, especially those like CECL that are significant departures from previous methods. The efforts needed can be as complex as those for a completely new technology implementation and can take precedence over projects that are designed to improve your core business … and stakeholder value.

But with foresight and proper planning, you can prepare for a change like CECL by leveraging resources in a way that will maximize your efforts to meet these new requirements while also enhancing business value. At Financial Risk Group, we take this approach with each of our clients. The key is to start by asking “how can I use this new requirement to generate revenue and maximize business performance?”

 

The Biggest Bang Theory

In the case of CECL, there are two significant areas that will create the biggest institution-wide impact: analytics and data governance. While the importance of these is hardly new to financial institutions, we are finding that many neglect to leverage their CECL data and analytics efforts to create that additional value. Some basic first steps you can take include the following.

  • Ensure that the data utilized is accurate and that its access and maintenance align to the needs and policies of your business. In the case of CECL these will be employed to create scenarios, model, and forecast … elements that the business can leverage to address sales, finance, and operational challenges.
  • For CECL, analytics and data are leveraged in a much more comprehensive fashion than previous methods of credit assessment provided.  Objectively assess the current state of these areas to understand how the efforts being put toward CECL implementation can be leveraged to enhance your current business environment.
  • Identify existing available resources. While some firms will need to spend significant effort creating new processes and resources to address CECL, others will use this as an opportunity to retire and re-invent current workflows and platforms.

Recognizing the business value of analytics and data may be intuitive, but what is often less intuitive is knowing which resources earmarked for CECL can be leveraged to realize that broader business value. The techniques and approaches we have put forward provide good perspective on the assessment and augmentation of processes and controls, but how can these changes be quantified? Institutions without in-house experienced resources are well advised to consider an external partner. The ability to leverage expertise of staff experienced in the newest approaches and methodologies will allow your internal team to focus on its core responsibilities.

Our experience with this type of work has provided some very specific results that illustrate the short-term and longer-term value realized. The example below shows the magnitude of change and benefits experienced by one of our clients: a mid-sized North American bank. A thorough assessment of its unique environment led to a redesign of processes and risk controls. The significant changes implemented resulted in less complexity, more consistency, and increased automation. Additionally, value was created for business units beyond the risk department. While different environments will yield different results, those illustrated through the methodologies set forth here provide a good example to better judge the outcome of a process and controls assessment.

 

 Legacy EnvironmentAutomated Environment
Reporting OutputNo daily available manual controls for risk reportingDaily in-cycle reporting controls are automated with minimum manual interaction
Process SpeedCredit run 40+ hours
Manually-input variables prone to mistakes
Credit run 4 hours
Cycle time reduced from 3 days to 1 for variable creation
Controls & AuditMultiple audit issues and Regulatory MRAsAudit issues resolved and MRA closed
Model ExecutionSpreadsheet driven90 models automated resulting in 1,000 manual spreadsheets eliminated

 

While one approach will not fit all firms, providing clients with an experienced perspective on more fully utilizing their specific investment in CECL allows them to make decisions for the business that might otherwise never be considered, thereby optimizing the investment in CECL and truly ensuring you receive the full value from your CECL buck.

More information on how you can prepare for—and drive additional value through—your CECL preparation is available on our website and includes:

White Paper – CECL: Why the expectations are different

White Paper – CECL Scenarios: Considerations, Development and Opportunities

Blog – Data Management: The Challenges

Turning a Blind Eye to the Risky Business of Incentive-based Sales Practices 

Should you be monitoring your sales activities to detect anomalous behaviors?

The use of sales incentives (commissions, bonuses, etc.) to motivate the behavior of salespeople has a long history in the United States.  We all hope to assume the initial structuring of incentive-based pay is not intended to have nefarious or abusive impacts on its customers but, in a number of recent and well-publicized stories of mistreatment of both customers and customer information, we have discovered that these negative consequences do exist.  Likely, the business practice of turning an administrative blind eye to the damage done to consumers as a result of these sales incentive programs has played an even greater role in the scale of abuse that has been uncovered over the last decade.  In the most recent cases of unchecked and large-scale customer abuse, with particular attention focused on the financial services industry, this business paradigm of tying employee benefits (defined as broadly tying employment and/or income potential to sales) were resolved through arbitration and frequently typecast as “a cost of doing business”.

Today, are you putting your business, and all those associated with its success at risk by turning a blind eye to the effects of your business practices, including your employee incentive programs?  There are new consequences being laid on to corporate leaders and board members for all business practices used by the company, and the defense of not knowing the intricacies and results of these practices does not protect you from these risks.

We have developed a methodology to detect both customer sales and individual product behaviors that are indicative of problematic situations that require additional examination.  Our methodology goes beyond the aggregate sales, which are primarily discussed in the literature, to highlight individuals and/or groups that are often obviated when analyzing such data.

A forthcoming  paper, “Sales Practices: Monitoring Sales Activity for Anomalous Behaviors” will explore these issues, and a resolution, in depth. Visit any of our social media channels for the link.

 

 

 

Subscribe to our blog!